Projeto de Instalações Elétricas Residenciais

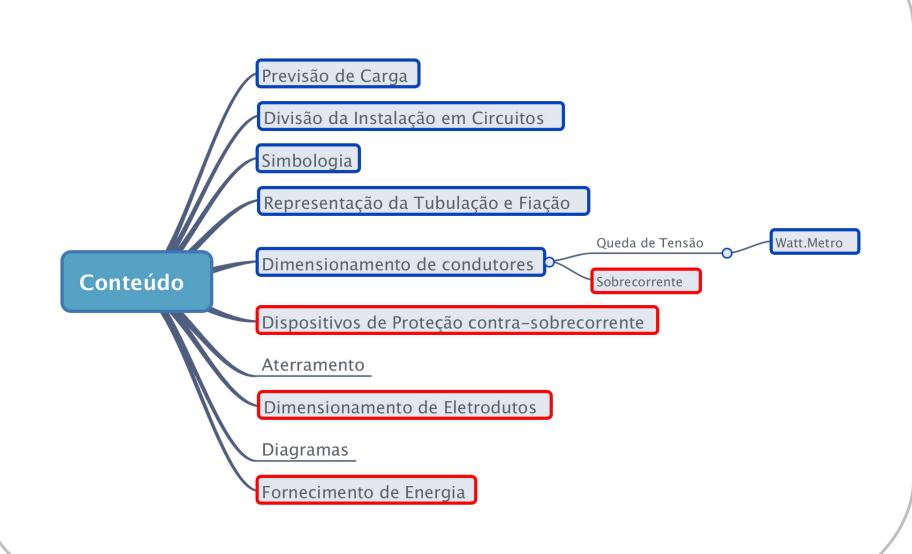
Me. Hader Aguiar Dias Azzini

hader_azzini@hotmail.com

Campinas - ES 2014

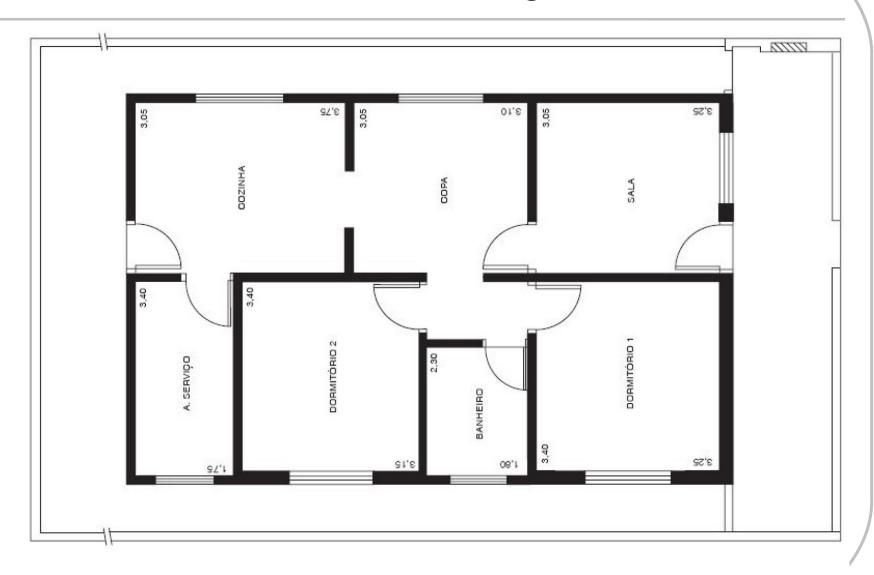
Introdução

Em geral, o projeto elétrico compreende quatro partes:


Memória (justificativa e descrição);

Conjunto de plantas, esquemas e detalhes;

Especificações (material)


Orçamento

Informações sobre o contexto da instalação (finalidade, localização, número de pessoas, etc).

Previsão de Carga

Previsão de Carga

Quantas Lâmpadas?

Quantas Tomadas?

Carga de Iluminação

Em cada cômodo

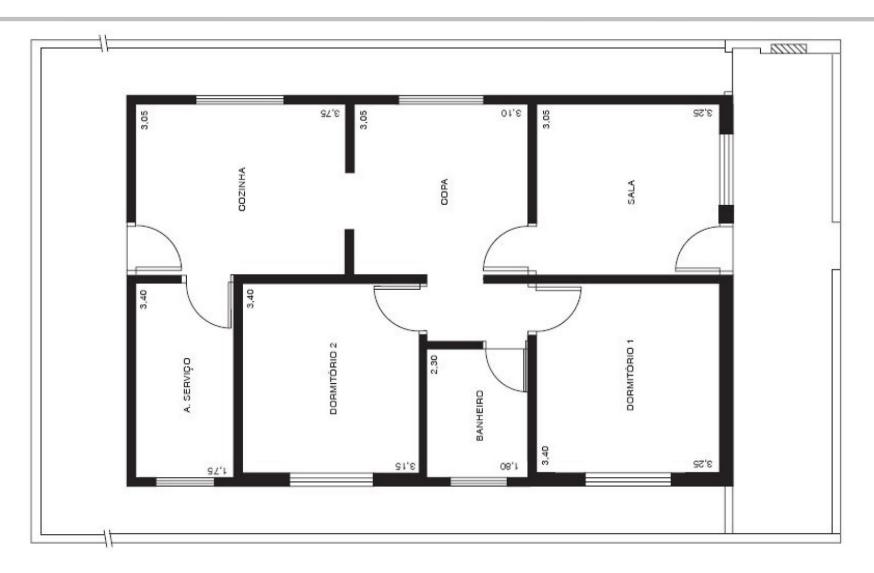
Pelo menos um ponto de luz;

No teto;

Interruptor na parede;

Área igual ou inferior a 6 m²:

Um com mínimo de 100 VA;


Área superior a 6 m²:

Mínimo de 100 VA para os primeiros 6 m²;

Acréscimo de 60 VA para cada aumento de 4m² inteiros.

Áreas externas: Decisão entre cliente e projetista.

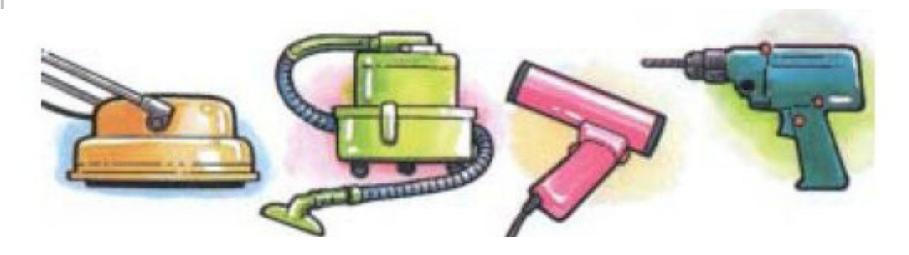
Previsão de Carga

Previsão de Carga de Iluminação

Dependencia	Dimensões area (m²)	Poténcia de iluminação (VA)		
sala	A = 3,25 x 3,05 = 9,91	9,91m² = 6m² + 3,94m² 100VA	100 VA	
сора	A = 3,10 x 3,05 = 9,45	9,45m² = 6m² + 3,45m² 100VA	100 VA	
cozinha	A = 3,75 x 3,05 = 11,43	11,43m²=6m² + 4m² + 1342m² 100VA + 60VA	160 VA	
dormitório 1	A = 3,25 x 3,40 = 11,05	11,05m² = 6m² + 4m² + 105m² 100VA + 60VA	160 VA	
dormitório 2	A = 3,15 x 3,40 = 10,71	10,71m² = 6m² + 4m² + 0,34m² 100VA + 60VA	160 VA	

Previsão de Carga de Iluminação

banho	A = 1,80 x 2,30 = 4,14	4,14m² => 100VA	100 VA
área de serviço	A = 1,75 x 3,40 = 5,95	5,95m² => 100VA	100 VA
hall	A = 1,80 x 1,00 = 1,80	1,80m² => 100VA	100 VA


Tomadas de Uso Geral (TUG):

Destinadas a aparelhos móveis ou portáteis.

<u>Quantidade:</u>

Cômodos ou dependências com área inferior ou igual a 6m² No mínimo uma tomada

Cômodos ou dependências com área superior a 6m² Uma tomada para cada 5m ou fração de perímetro Espaçadas tão uniformemente quanto possível

Tomadas de Uso Geral (TUG):

Quantidade:

Cozinha, copas, copas-cozinhas, áreas de serviço, lavanderias e locais análogos:

Uma tomada para cada 3,5m ou fração de perímetro

Uma para bancada com largura igual ou superior a 0,3 m

Subsolos, varandas, garagens, sótãos, *halls* de escadarias, sala de bombas e locais análogos

No mínimo uma tomada

Banheiros

No mínimo uma tomada junto ao lavatório com distância mínima de 60cm do limite do boxe.

Tomadas de Uso Geral (TUG):

Potência:

Banheiros, cozinha, copas, copas-cozinhas, áreas de serviço, lavanderias e locais análogos:

Mínimo de 600 VA por tomada, até 3 tomadas 100 VA da 4ª tomada em diante.

Demais cômodos e dependências

No mínimo 100VA por tomada

Tomadas de Uso Específico (TUE):

Destinadas a aparelhos fixos

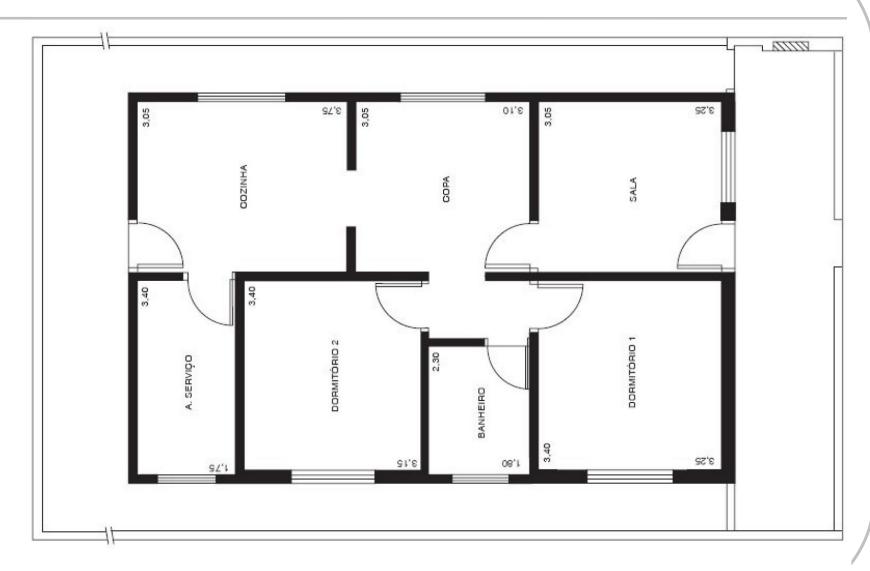
Quantidade:

De acordo com o número de aparelhos.

Potência:

A nominal do aparelho.

Localização:

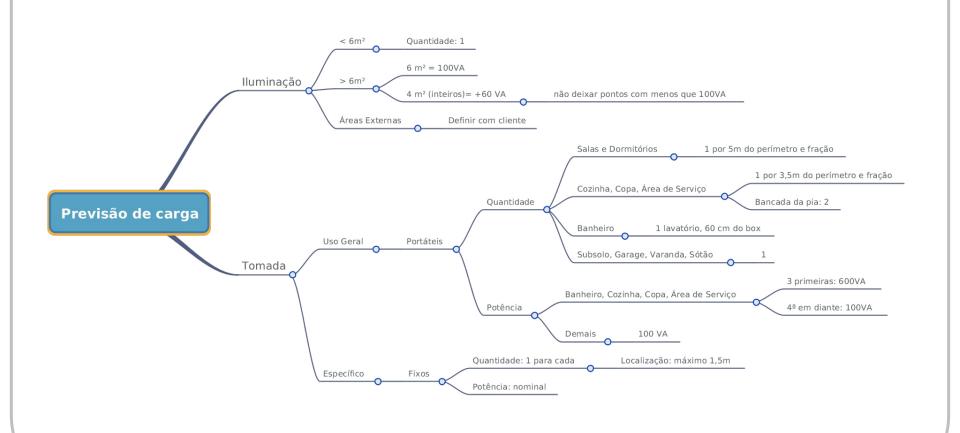

No máximo a 1,5m do equipamento.

Previsão de Carga

Previsão de Carga de Tomada

528 I I I I I I I I I I I	1.2	Dimensões	Quantidad	Quantidade mínima		
Dependência	Área (m²)	Perímetro (m)	TUG's	TUE's		
sala	9,91	3,25x2 + 3,05x2 = 12,6	5 + 5 + 2,6 (1 1 1) = 3	25-72		
сора	9,45	3,10x2 +3,05x2 = 12,3	3,5 + 3,5 + 3,5 + 1,8 (1 1 1 1) = 4	-		
cozinha	11,43	3,75x2 + 3,05x2 = 13,6	3,5 + 3,5 + 3,5 + 3,1 (1 1 1 1) = 4	1 torneira elétr. 1 geladeira		
dormitório 1	11,05	3,25x2 + 3,40x2 = 13,3	5 + 5 + 3,3 (1 1 1) = 3	_		
dormitório 2	10,71	3,15x2 + 3,40x2 = 13,1	5 + 5 + 3,1 (1 1 1) = 3	-		
banho	4,14	OBSERVAÇÃO	1	1 chuveiro elétr		
área de serviço	5,95	Área inferior a 6m²:	2	1 máquina lavar roupa		
hall	1,80	o perímetro	1	2 - 1		
área externa	-	_	_	_		

Previsão de Carga de Tomada


	Dimensões		Quantidade		Previsão de Carga	
Dependência	Área (m²)	Perimetro (m)	TUG's	TUE's	TUG's	TUE's
sala	9,91	12,6	4*	_	4x100VA	_
сора	9,45	12,3	4	-	3x600VA 1x100VA	_
cozinha	11,43	13,6	4	2	3x600VA 1x100VA	1x5000W (torneira) 1x500W (geladeira)
dormitório 1	11,05	13,3	4*	_	4x100VA	[
dormitório 2	10,71	13,1	4*	_	4x100VA	<u>-</u>
banho	4,14	-	1	1	1x600VA	1x5600W (chuveiro)
área de serviço	5,95	_	2	1	2x600VA	1x1000W (máq.lavar)
hall	1,80	_	1	_	1x100VA	_
área externa		92 <u>—</u> 2+	_	<u>-</u>	1 <u></u>)	<u></u>

Previsão de Carga (Geral)

Reunidos todos os dados obtidos, tem-se o seguinte quadro:

The state of	Dimensões		Poténcia de	TUG's		TUE's	
Dependência	Área (m²)	Perímetro (m)	iluminação (VA)	Quanti- dade	Poténcia (VA)	Discrimi- nação	Poténcia (W)
sala	9,91	12,6	100	4	400	_	_
сора	9,45	12,3	100	4	1900	-	_
cozinha	11,43	13,6	160	4	1900	torneira geladeira	5000 500
dormitório 1	11,05	13,3	160	4	400	_	
dormitório 2	10,71	13,1	160	4	400	-	_
banho	4,14	_	100	1	600	chuveiro	5600
área de serviço	5,95	_	100	2	1200	máq. lavar	1000
hall	1,80	-	100	1	100		-
área externa	_		100	_	_	_	_
TOTAL	_	_	1080VA	_	6900VA	_	12100W

potencia aparente poténcia ativa

Simbologia

1.1- Símbolos e Convenções

A simbologia é definida por normas da ABNT, dentre as quais pode-se citar:

NBR- 5446/80: Símbolos gráficos para execução de esquemas;

NBR-5444/89: Símbolos gráficos para instalações elétricas prediais;

NBR-5443/77: Sinais e símbolos para eletricidade;

A seguir são apresentados os símbolos mais utilizados em projetos elétricos.

A. Dutos e Distribuição

	Multifilar	Unifilar	Significado	Observações
1		<u>₽</u>	Eletroduto embutido no teto ou parede. Diâmetro 25mm.	
2		— — — — — —	Eletroduto embutido no piso.	Todas as dimensões em mm. Indicar a bitola se
3		- • - • -	Tubulação para telefone externo.	não for 15mm.
4		- • • - • • -	Tubulação para telefone interno.	
5			Tubulação para campainha, som, anunciador ou outro sistema.	Indicar na legenda o sistema passante.
6	R ou S ou T		Condutor de fase no interior do eletroduto.	
7	N		Condutor neutro no interior do eletroduto.	Cada traço representa um condutor. Indicar bitola
8			Condutor de retorno no interior do eletroduto.	(seção), número do circuito e a bitola (seção) dos condutores, exceto se forem de 1,5mm ² .
9	<u>+</u> ou PE		Condutor de proteção (terra) no interior do eletroduto.	excelo se lorelli de 1,011111

B. Quadros de Distribuição

	Multifilar	Unifilar	Significado	Observações		
25			Quadro terminal de luz e força aparente. QD			
26		Groend I muchaley	Quadro terminal de luz e força embutido. QD			
27			Quadro geral de luz e força aparente. QD	Indicar as cargas de luz em		
28			Quadro geral de luz e força embutido. QD	watts e de força em W ou kW.		
29			Caixa de telefones. QD			
30		Med.	Caixa para medidor ou Quadro de medição embutido. QM			

C. Interruptores

	Multifilar	Unifilar Oficial	Unifilar Antigo	Significado	Observações	
31	-6	Oa	S	Interruptor simples de uma seção (uma tecla).		
32	000	a⊕b	S ₂	Interruptor simples de duas seções (duas teclas).	A letra minúscula indica o ponto de comando.	
33	000	^a \bigcirc ^b	S_3	Interruptor simples de três seções (três teclas).		
34	000	* -2-	L ₂	Conjunto de interruptor simples de uma tecla e tomada.	O número entre dois traços indica o circuito correspondente.	
35	000	* -2-		Conjunto de interruptor simples de duas teclas e tomada.	As letras minúsculas indicam o ponto comandado e o número entre dois traços, o circuito correspondente.	
36	-63	a	S _{3w} (S _p)	Interruptor paralelo de uma seção (uma tecla) ou three-way.	A letra minúscula indica o ponto comandado.	

D. Luminárias, Refletores e Lâmpadas

	Multifilar	Unifilar	Significado	Observações
59		_4- O2x100W	Ponto de luz incandescente no teto (aparente). Indicar o número de lâmpadas e a potência em watts.	A letra minúscula indica o ponto de comando,
60		-4- 2x100W	Ponto de luz incandescente no teto (embutido).	e o número entre dois traços, o circuito.
61	-(X)-	-4- 60W	Ponto de luz incandescente na parede (arandela).	Deve-se indicar a altura da arandela.
62		-4- 125W-vм	Ponto de luz a vapor de mercúrio no teto. Indicar o número de lâmpadas e a potências em watts.	A letra minúscula indica o ponto de comando, e o número entre dois traços, o circuito.
63		-4- 4x20W	Ponto de luz fluorescente no teto (aparente) (indicar o número de lâmpadas e na legenda, o tipo de partida do reator).	A letra minúscula indica o ponto de comando, e o número entre dois traços, o circuito.
64	_	-4- <u>4x</u> 20W	Ponto de luz fluorescente na parede.	Deve-se indicar a altura da luminária.
65		a -4- 4x20W	Ponto de luz fluorescente no teto (embutido).	
66		-4- 4x20W	Ponto de luz fluorescente no teto em circuito vigia (emergência).	

Convenções

- Ponto de luz no teto
- O Interruptor de uma seção
- Interruptor paralelo

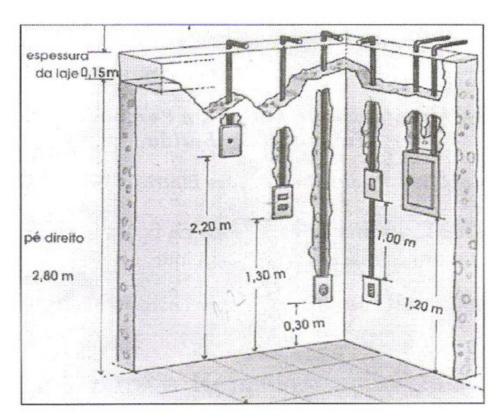


Figura 5.19 - Elevações Recomendadas pela NBR-5444 para Caixas de Derivação de Embutir.

Fonte: CESP/Pirelli - Instalações Elétricas Residenciais

Instalações Elétricas

Divisão da Instalação em Circuitos

Definições

Circuito Elétrico:

Pontos de consumo com mesmos condutores e mesmo dispositivo de proteção.

Dispositivo de Proteção:

Atua automaticamente em condições anormais.

Evitar ou limitar danos.

Os principais são os disjuntores termomagnéticos, os disjuntores diferenciais e os fusíveis.

Quadro de Distribuição (QD):

Abriga um ou mais dispositivos de proteção e/ou de manobra

Abriga conexões entre condutores e dispositivos,

Fim de distribuir a energia elétrica aos circuitos.

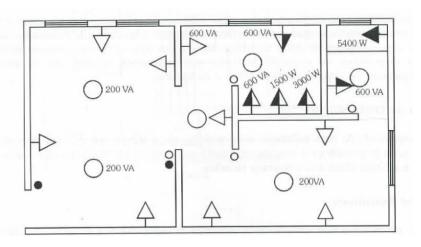
Definições

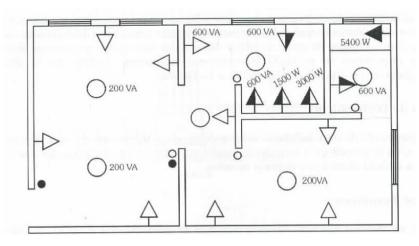
Ele é o centro de distribuição, pois:

recebe os fios que vêm do medidor.

nele é que se encontram os dispositivos de proteção.

dele é que partem os circuitos terminais que vão alimentar diretamente as lâmpadas, tomadas e aparelhos elétricos.


Preferencialmente no Centro de Carga.


economia nos condutores,

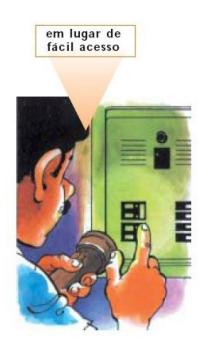
Redução no comprimentos dos circuitos terminais,

Reduzindo as quedas de tensão; e,

Possivelmente, a bitola dos condutores.

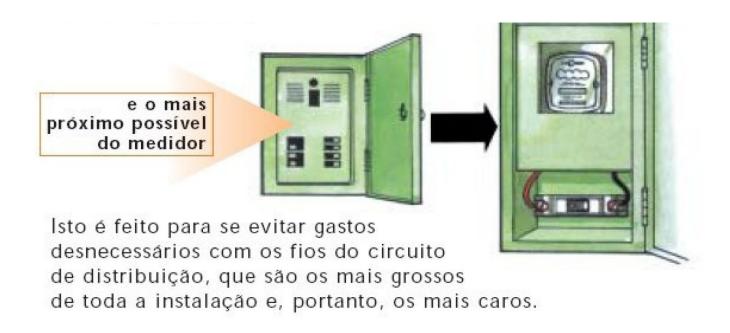
Preferencialmente no Centro de Carga.

Baricentro

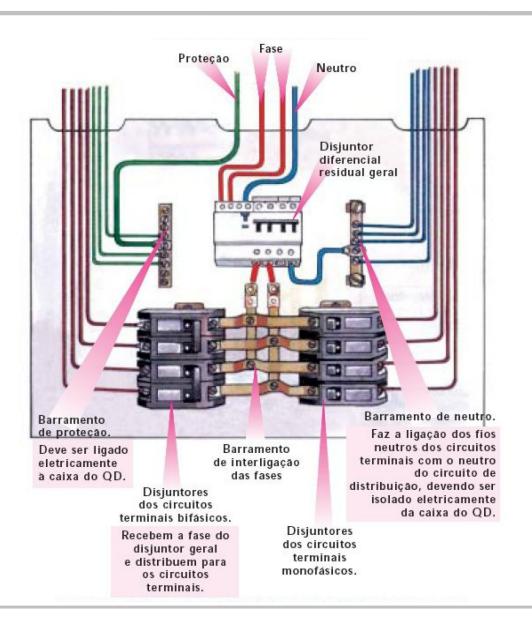

$$X = \frac{\overline{X_1 \cdot P_1 + X_2 \cdot P_2 + X_3 \cdot P_3 + \ldots + X_n \cdot P_n}}{P_1 + P_2 + P_3 + \ldots + P_n}$$

$$Y = \frac{\overline{Y_1 \cdot P_1 + Y_2 \cdot P_2 + Y_3 \cdot P_3 + \ldots + Y_n \cdot P_n}}{P_1 + P_2 + P_3 + \ldots + P_n}$$

$$Y_1 = \frac{\overline{Y_1 \cdot P_1 + Y_2 \cdot P_2 + Y_3 \cdot P_3 + \ldots + Y_n \cdot P_n}}{P_1 + P_2 + P_3 + \ldots + P_n}$$


Figura 5.3 - Baricentro das Cargas.

Além de ser próximo ao centro de carga, deve estar em: ambiente de serviço ou circulação; local de fácil acesso; local visível e seguro.



Além de ser próximo ao centro de carga, deve estar em: ambiente de serviço ou circulação; local de fácil acesso; local visível e seguro.

Quadro de Disjuntor (internamente)

Quadro de Distribuição

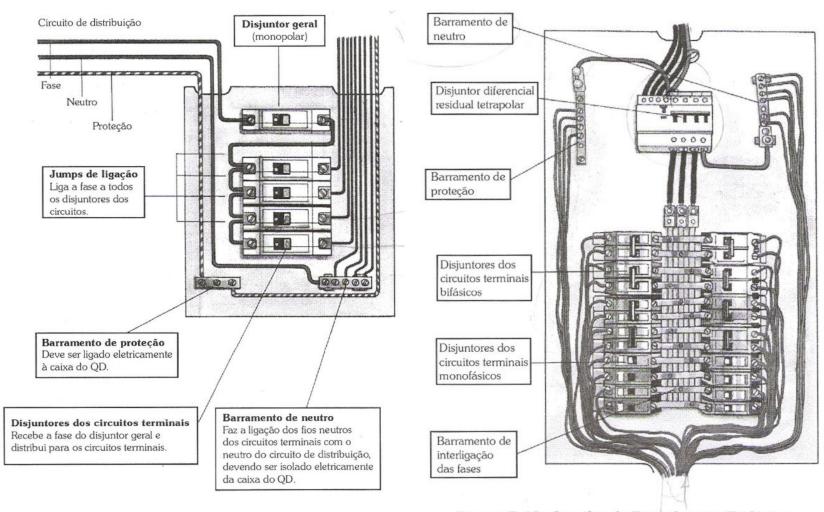


Figura 5.11 - Quadro de Distribuição Monofásico.

Fonte: CESP/Pirelli - Instalações Elétricas Residenciais

Figura 5.12 - Quadro de Distribuição Trifásico.

Fonte: CESP/Pirelli - Instalações Elétricas Residenciais

Divisão da Instalação em Circuitos Terminais

A divisão em circuitos terminais:

- Facilita a operação e a manutenção da instalação,
- Permite o seccionamento apenas do circuito defeituoso,
- Reduz a interferência entre os pontos de utilização.
- Reduz a queda de tensão e a corrente nominal,
- Permite o dimensionamento de:
 - Condutores com menor seção
 - Dispositivos de proteção com menor capacidade nominal.

Deve-se evitar projetar circuitos terminais muito carregados (elevada potência nominal), pois

- Resultaria em condutores de seção nominal grande,
- Dificultaria passagen dos fios nos eletrodutos
- Dificultaria as ligação dos fios aos terminais (interruptores, tomadas e luminárias)

Divisão da Instalação em Circuitos Terminais

Recomendações

- Não permitir o risco de realimentação inadvertida através de outro circuito;
- Os circuitos terminais divididos pela função.
 - Circuitos distintos para iluminação e tomadas.
 - Para residências, hoteis e similares são permitidos no mesmo circuito.
 - Exceto em copas, cozinha e áreas de serviço (TUG deve ter um circuito independente)

Divisão da Instalação em Circuitos Terminais

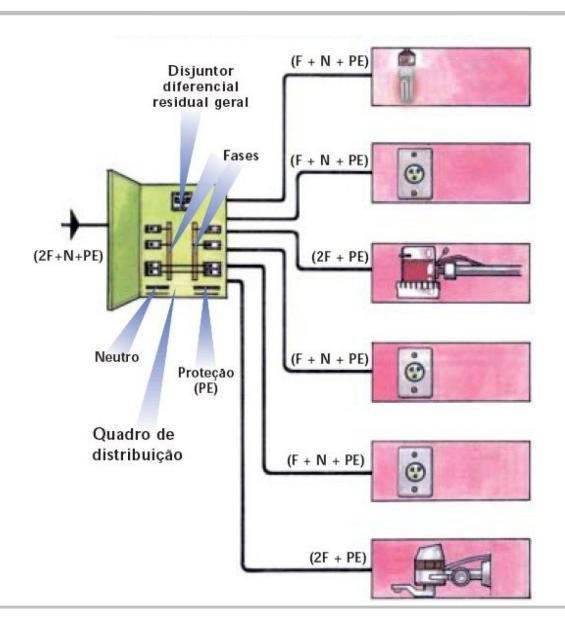
Recomendações

- A potência deve estar limitada a 1200 VA em 127 V, ou 2200 VA em 220 V;
- Corrente nominal igual ou superior a 10 A devem ser TUE.
- Circuito exclusivo para TUE
- Em instalações com duas ou três fases, buscar obter o maior equilíbrio possível.

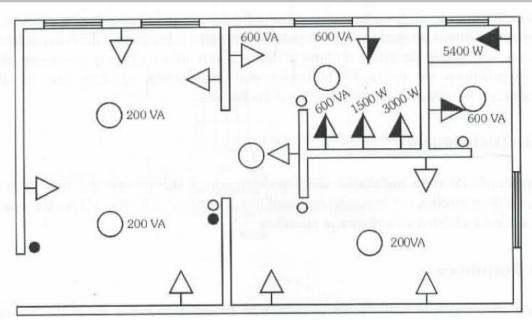
Tensão dos Circuitos

Quando a instalação for...

Monofásica: todos os circuitos serão fase-neutro


Bifásica ou trifásica:

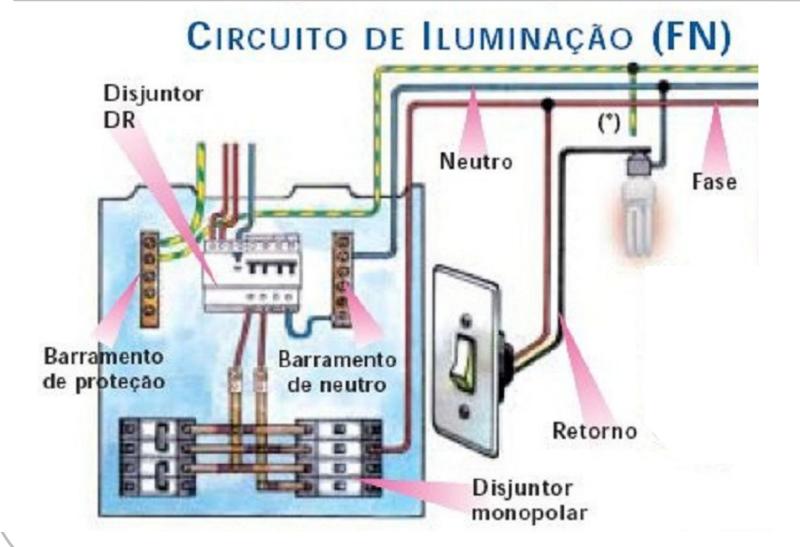
Iluminação: fase-neutro


Instalação com tensão até 230 V:

TUE: fase-fase ou fase-neutro

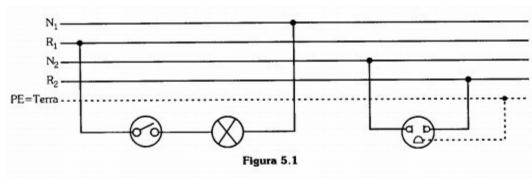
Tensão dos Circuitos

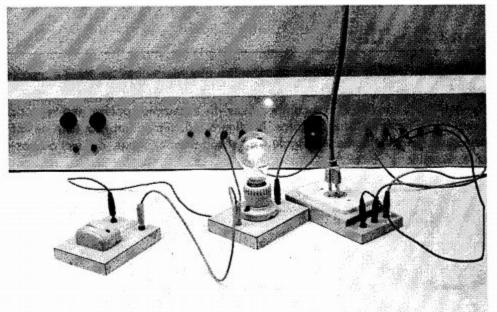
Divisão dos Circuitos



Circuito Nº	Circuito Tipo/Local	Tensão (V)	Carga ILUM (W)	Carga TUG (W)	Carga TUE (W)	Carga Total (W)	Fase F1 (W)	Fase F2 (W)	Fase F3 (W)	Corrente de Projeto Îp (A)	Corrente Corrigida (A)	Condutores Vivos (mm²)	Condutor de Proteção (mm²)	Proteção: Tipo	Proteção: Nº de pólos	Proteção: Corrente Nominal (A)

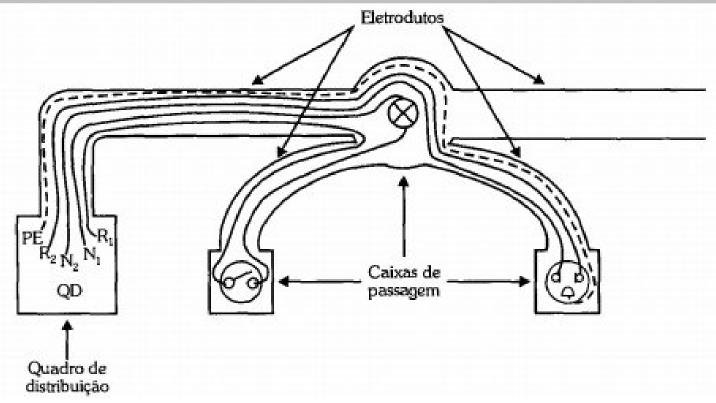
Divisão dos Circuitos


Circuito Nº	Circuito Tipo/Local	Tensão (V)	Carga ILUM (W)	Carga TUG (W)	Carga TUE (W)	Carga Total (W)	Fase F1 (W)	Fase F2 (W)	Fase F3 (W)	Corrente de Projeto Ip (A)	Corrente Corrigida (A)	Condutores Vivos (mm²)	Condutor de Proteção (mm²)	Proteção: Tipo	Proteção: Nº de pólos	Proteção: Corrente Nominal (A)
1	lluminação	127	840		*	840	840		*						-	
2	TUG	127		1400	- 1	1400	- 7	1400								
3	TUG-Coz	127		1200		1200	1200									
4	TUG-Coz	127		600	*	600	600								- 1	
5	TUE- Chuveiro	220	100		5400	5400	2700	2700								
6	TUE- Tornelra	220	*	3.	3000	3000	1500	1500								
7	TUE- Microondas	127			1500	1500	,	1500								
															-	
Totals:			840	3200	9900	13940	6840	7100								


1.2- Esquemas Fundamentais de Ligação

Esquemas Fundamentais de Ligação

Esquema de Ligação

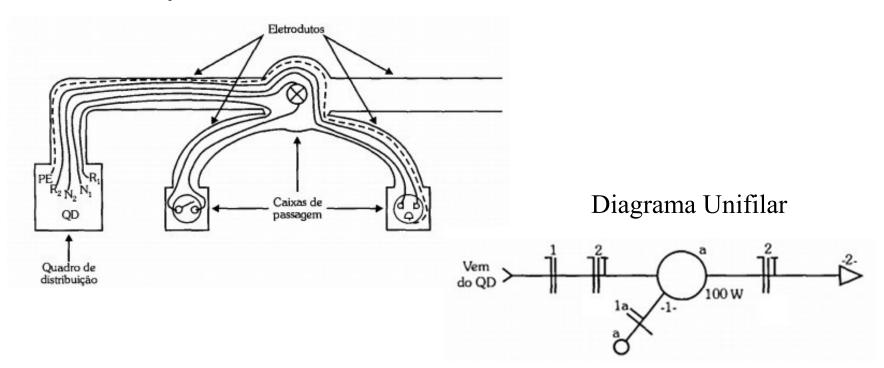


Definições da NBR 5410:2004:

Todo o circuitos deve conter condutor de proteção (PE);

O condutor de proteção pode ser comum a vários circuitos;

Diagrama Multifilar



Em um projeto se a representação de todos os condutores fosse feita na forma multifilar, seriam tantos traços que tornariam a interpretação do projeto impraticável.

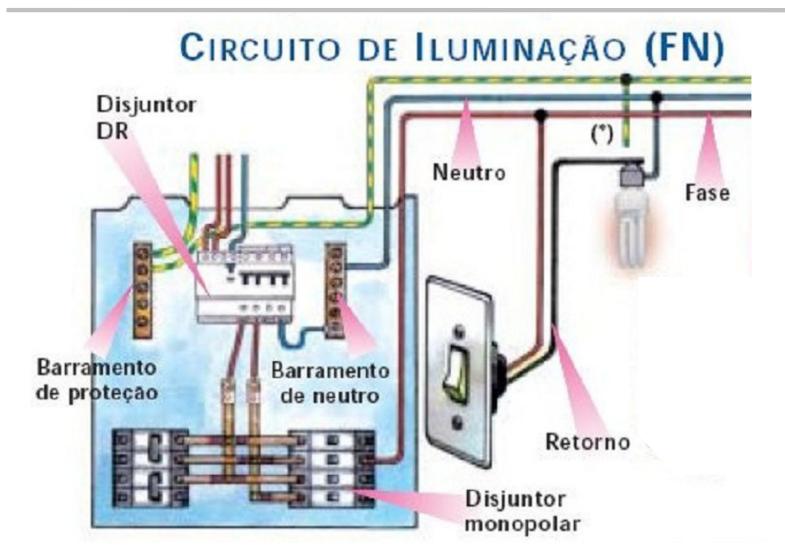
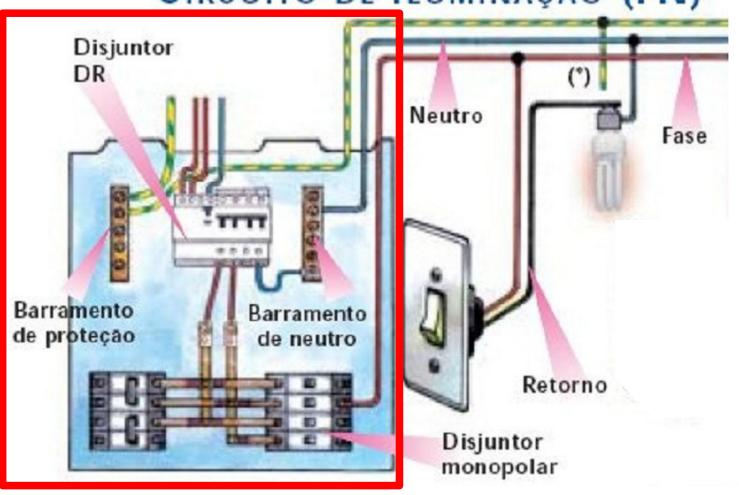
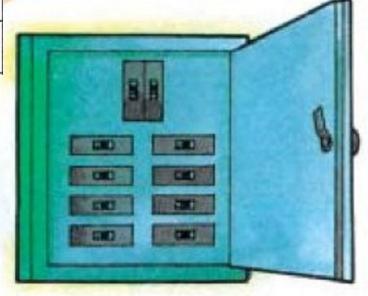
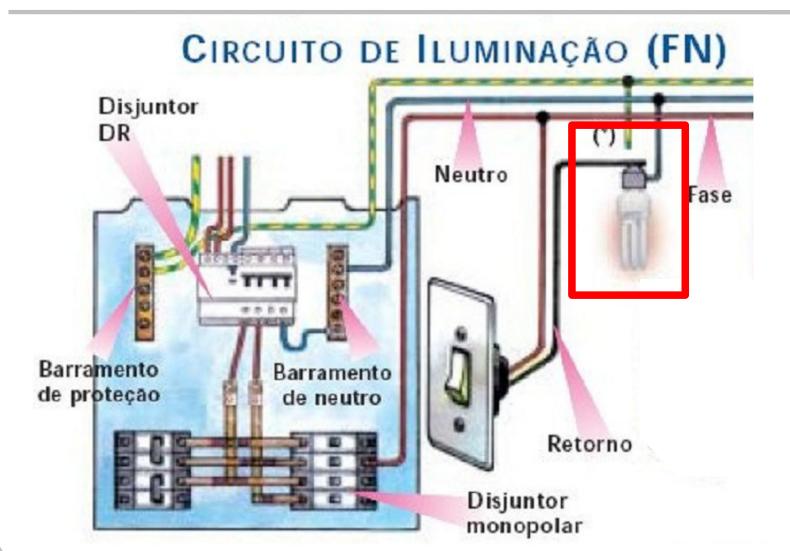

Dessa forma, não é utilizada esta representação em projetos elétricos.

Diagrama Unifilar


Representa o sistema elétrico de forma simplificada, identificando o numero de condutores e seus trajetos por um único traço.

Permite de forma nítida e clara a interpretação do projeto elétrico.


CIRCUITO DE ILUMINAÇÃO (FN)



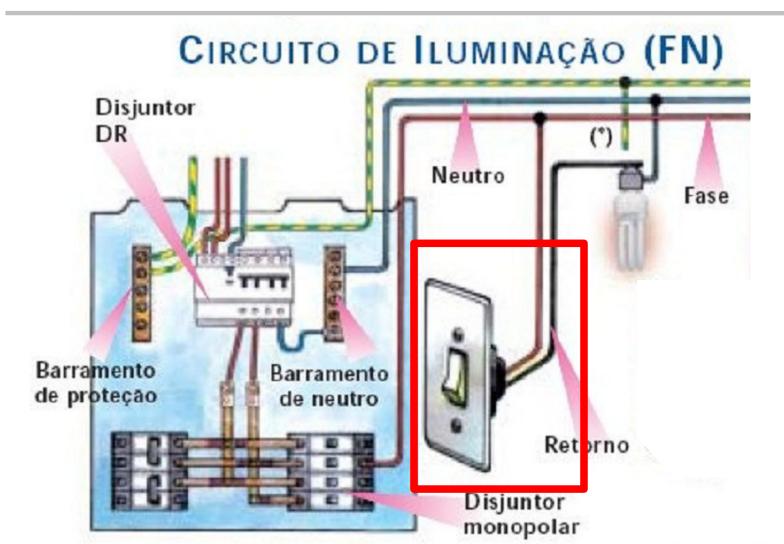
SÍMBOLO

Unifilar	Significado				
	Quadro terminal de luz e força aparente. QD				
	Quadro terminal de luz e força embutido. QD				

Quadro de distribuição

SÍMBOLO

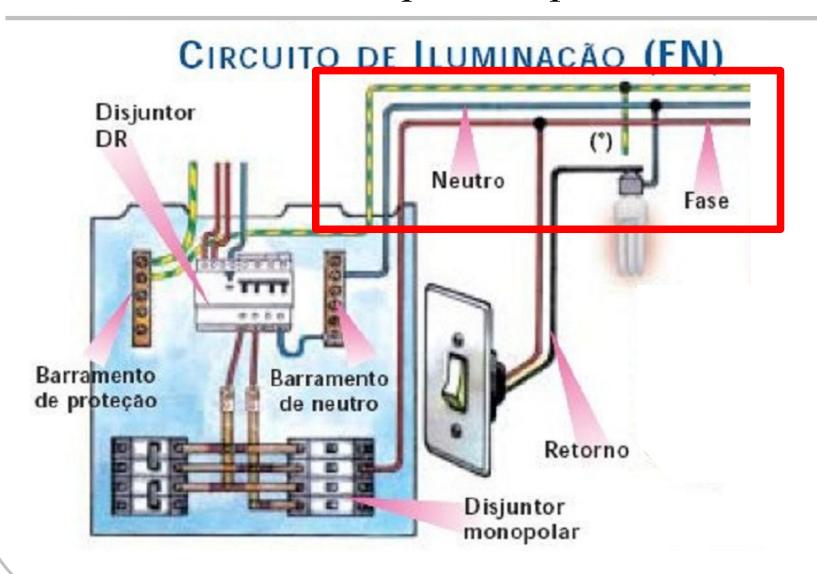
Unifilar	Significado	Observações
-4- 2x100W	Ponto de luz incandescente no teto (aparente). Indicar o número de lâmpadas e a potência em watts.	A letra minúscula indica o ponto de comando, e o número entre dois traços, o circuito.

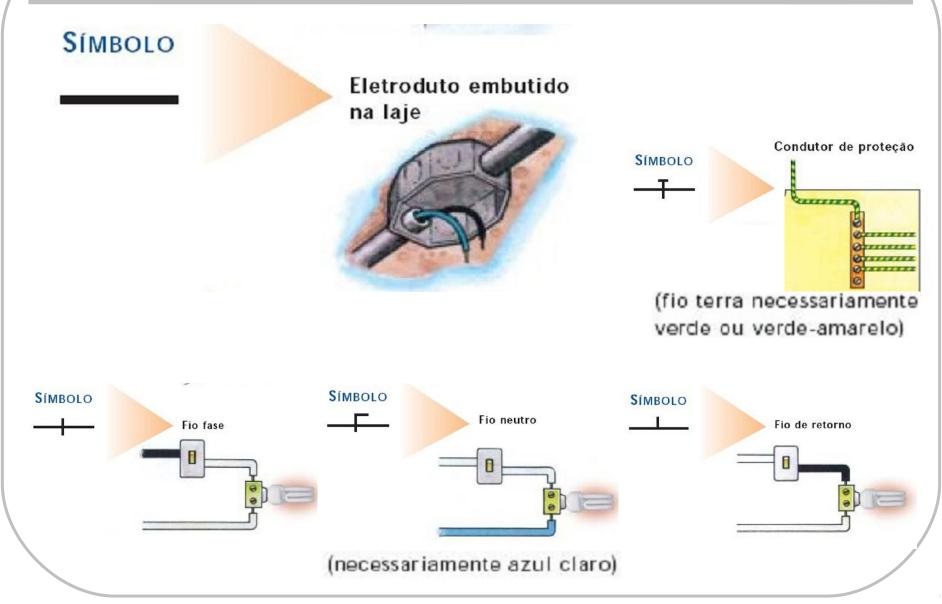

100 - potência de iluminação

4- - número do circuito

a - comando

Ponto de luz no teto





SÍMBOLO

Unifilar Oficial	Unifilar Antigo	Significado
Oa	s	Interruptor simples de uma seção (uma tecla).

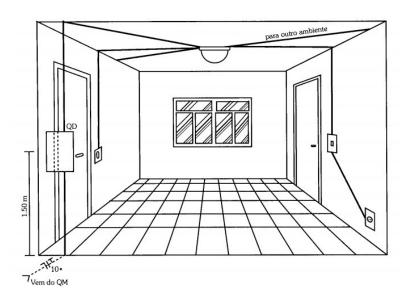
Interruptor simples

Interruptores Paralelos (Three-Way)

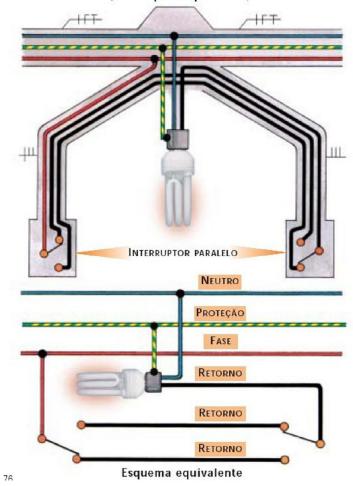
Os interruptores paralelos são usados quando desejamos comandar uma lâmpada ou grupo de lâmpadas por pontos diferentes.

São usados nos seguintes locais:

Escadarias;

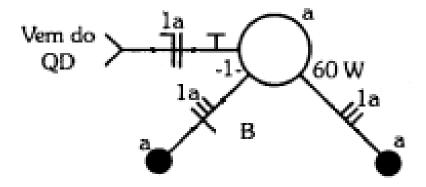

Corredores;

Quartos;


Outros cômodos de uma residência;

Também é conhecido por "three-way" (três vias ou três caminhos).

Interruptores Paralelos (Three-Way)



3. Ligação de lâmpada comandada de dois pontos (interruptores paralelos).

Representação da ligação

Como fica o Diagrama Unifilar?

Interruptor Intermediário (Four-Way)

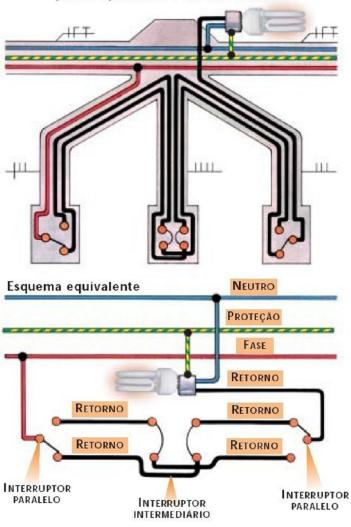
Esse tipo de interruptor é utilizado quando desejamos comandar uma lâmpada por três ou mais pontos diferentes

São usados em:

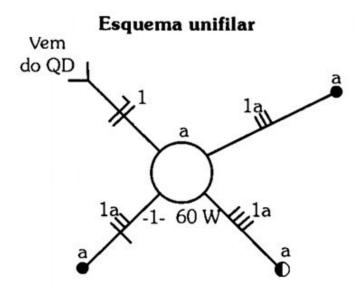
Escadas de vários andares;

Corredores de acessos a vários quartos;

Salões com vários acessos;

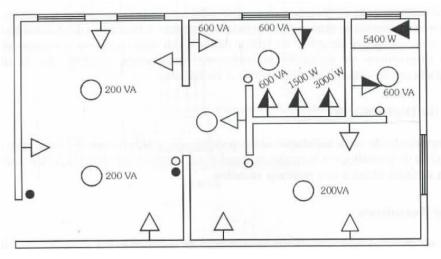

Características

É possível usar qualquer número de interruptores intermediários;


A sua instalação é feita entre dois interruptores paralelos, sendo por isso denominado de interruptor intermediário ou four-way;

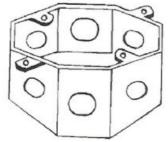
Interruptor Intermediário (Four-Way)

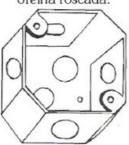
 Ligação de lâmpada comandada de três ou mais pontos (paralelos + intermediários).


Esquema de Ligação: Four-Way

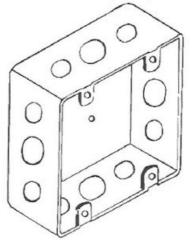
Projeto Elétrico I

Representação da Tubulação e da Fiação


• Após a locação dos pontos e a definição dos circuitos terminais.


Circuito Nº	Circuito Tipo/Local	Tensão (V)	Carga ILUM (W)	Carga TUG (W)	Carga TUE (W)	Carga Total (W)	Fase F1 (W)	Fase F2 (W)	Fase F3 (W)
1	lluminação	127	840		*	840	840		+
2	TUG	127	8	1400		1400		1400	
3	TUG-Coz	127	a	1200	-	1200	1200	-	
4	TUG-Coz	127	*	600	*	600	600	(4)	
5	TUE- Chuveiro	220			5400	5400	2700	2700	
6	TUE- Tornelra	220	¥	Jan 1	3000	3000	1500	1500	
7	TUE- Microondas	127			1500	1500	,	1500	

- 1. Alocar o QD (conforme recomendações)
- 2. Traçar eletrodutos partindo do QD:
 - Caminho mais curto
 - Evitando cruzamentos
- 1. Interligar pontos de luz (embutido no teto)
- 2. Interligar aos pontos de luz, os interruptores e as tomadas (embutido em parede)
- 3. Evitar:
 - Mais de 6 para caixas octogonais (4" x 4" x 4" e 3" x 3" x 2") no teto
 - Mais de 4 para caixas retangulares (<u>4" x 4" x 2" e 4" x 2" x 2")</u> nas paredes


Caixa de ferro octogonal 4" x 4" e orelha para fixação, fundo e tampo móvel.

Caixa de ferro octogonal esmaltado de fundo fixo 3" x 3" com orelha roscada.

Caixa de ferro esmaltado 4" x 4" com orelha roscada-tipo caixa de passagem.

Caixa retangular de ferro esmaltado 2" x 4".

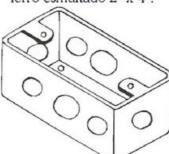
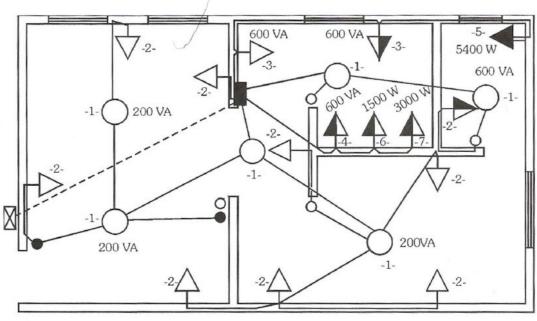
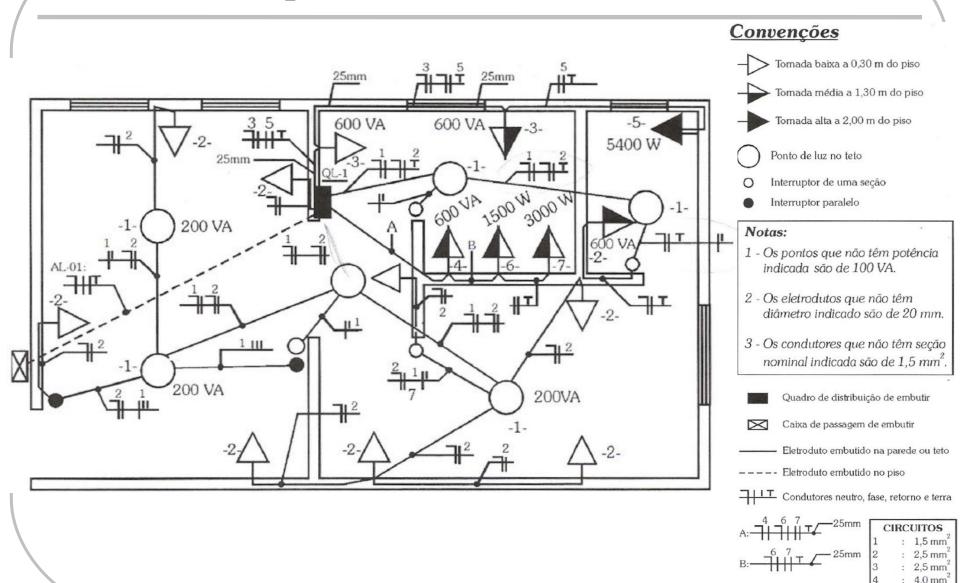



Figura 5.17 - Caixas de Derivação de Embutir em Ferro Esmaltado e Zincado a Fogo.

- 1. Evitar muitos circuitos para um eletroduto
- 2. Em algumas situações, tubulações embutida no piso para tomadas baixas e médias
- 3. Indicar os diâmetros nominais das tubulações.

Convenções

- Tomada baixa a 0,30 m do piso
- Tomada média a 1,30 m do piso
- Tomada alta a 2,00 m do piso
- Ponto de luz no teto
- O Interruptor de uma seção
- Interruptor paralelo


- Quadro de distribuição de embutir
- Caixa de passagem de embutir
- Eletroduto embutido na parede ou teto
- ---- Eletroduto embutido no piso
- Condutores neutro, fase, retorno e terra

Nota:

Os pontos que não têm potência indicada são de 100 VA.

Representação da Fiação

- 1.Os condutores em cada eletroduto (fase, neutro, terra e retorno)
- 2. Qual circuito pertence os condutores (número do circuito)
 - Identificar as seções (mm²)

5 : 4,0 mm² 6 : 4,0 mm² 7 : 4,0 mm² AL-01 : 10,0 mm²

Instalações Elétricas

Dimensionamento de Circuitos Elétricos

Objetivos

- Suportar
 - Limite de Temperatura
 - Limite de Queda de tensão
 - Sobrecarga (Dispositivos de Proteção)
 - Curto-circuito (tempo limitado)

Critérios

- 1. Capacidade de Corrente
- 2. Limite de Queda de Tensão → Simplificação Watt.metro
- Adota-se o maior valor como resultado.
- Condutores padronizados comercialmente (seção maior ou igual à calculada)

Critérios

Limite de Queda de Tensão (Método Simplificado Watts.metros)

- Útil para circuitos com cargas distribuídas ao longo do percurso.
- Aplicável para pequenas cargas
- Esse método não considera a reatância indutiva e nem o efeito pelicular
 - Para diâmetro relativamente pequenos a aproximação é aceitável.

- Usa o produto P.1
 - P: Potência da carga em Watts
 - − 1: Distância, em metros, da carga ao quadro que a alimenta
- O valor encontrado é dado de entrada das tabelas Watts . metros referentes às tensões 127V e 220V

Tabela 7.18 - Soma dos Produtos Potências (Watts) x Distâncias (m) e = 110 Volts (V), Circuito a 2 Condutores.

Condutor série métrica	% de queda de tensão				
	1%	2%	3%	4%	
(mm ²) S	Σ (P _{watts} X ℓ(m)				
1,5	5263	10526	15789	21052	
2,5	8773	17546	26319	35092	
4	14036	28072	42108	56144	
6	21054	42108	63162	84216	
10	35090	70100	105270	140360	
16	56144	112288	168432	224576	
25	87725	175450	263175	350900	

Tabela 7.19 - Soma dos Produtos Potências (Watts) x Distâncias (m) e=220 Volts (V).

Condutor série métrica	% de queda de tensão				
	1%	2%	3%	4%	
(mm ²) S	$\sum (P_{\mathbf{watts}} \mathbf{X} \ell_{\mathbf{(m)}})$				
1,5	21054	42108	63163	84216	
2,5	35090	70180	105270	140360	
4	56144	112288	168432	224576	
6	84216	168432	253648	336864	
10	140360	280720	421080	561440	
16	224576	449152	673728	898304	
25	350900	701800	1052700	1403600	

Exemplo

Dimensionar o circuito terminal de um apartamento, cujas cargas estão representadas na figura a seguir (instalação em eletroduto de PVC embutido em alvenaria, temperatura ambiente 30°C, isolação PVC, tensão 127 V).

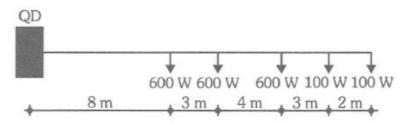


Figura 7.10 - Circuito Terminal com Cargas Distribuídas.

Instalações Elétricas

Seções Mínimas dos Condutores

Seções Mínimas de Condutores

- A NBR5410 define os valores mínimos das seções.
- Condutor Fase
- Condutor Neutro e Terra em função da seção da Fase.

Condutor Fase

Tabela 7.20 - Seções Mínimas dos Condutores. Fonte: Tabela 47 da NBR-5410.

Tipo de i	nstalação	Utilização do circuito	Seção mínima condutor (mm²)	Material
		Circuitos de iluminação	1,5 16	Cobre alumínio
Instalações fixas em geral Condutores e cabos isolados Condutores e nus		Circuitos de força	2,5 16	Cobre alumínio
		Circuitos de sinalização e circuitos de força	0,5	Cobre
	Condutores	Circuitos de força	10 16	Cobre alumínio
	Circuitos de sinalização e circuitos de controle	4	Cobre	
Ligações flexíveis feitas com cabos isolados		Circuitos a extra baixa tensão para aplicações especiais	0,75	Cobre
		Para qualquer outra aplicação	0,75	Cobre
		Para equipamento específico	Como especificado na for do equipamento	

- 1 Em circuitos de sinalização e controle destinados a equipamentos eletrônicos, são admitidas seções de até **0,1 mm²**.
- 2 Em cabos multipolares flexíveis contendo sete ou mais veias, são admitidas seções de até 0,1 mm².
- 3 OS CIRCUITOS DE TOMADAS DE CORRENTE SÃO CONSIDERADOS CIRCUITOS DE FORÇA.

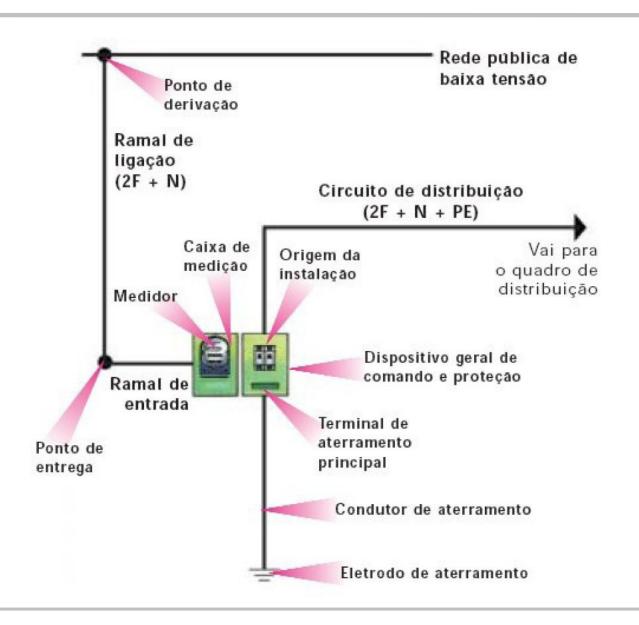
Condutor Neutro

• Em nenhuma circunstância, o condutor neutro pode ser comum a mais de um circuito.

Tabela 7.21 - Seção do Condutor Neutro. Fonte: Tabela 48 da NBR-5410.

Seção dos condutores fase (mm²)	Seção mínima do condutor neutro (mm²)	
1,5 a 25	a mesma seção do condutor fase	
35	25	
50	25	
70	35	
95	50	
120	70	
150	70	
185	95	
240	120	
300	150	
400	185	

Condutor Terra (Proteção)


- A seção de qualquer condutor de proteção que não faça parte do mesmo cabo ou do mesmo invólucro que os condutores vivos deve ser, em qualquer caso, não inferior a:
 - 2,5 mm², se possuir proteção mecânica;
 - 4 mm², se não possuir proteção mecânica.
- Um condutor de proteção pode ser comum a vários circuitos.

Condutor Terra (Proteção)

Tabela 7.22 - Seção do Condutor de Proteção. Fonte: Tabela 58 da NBR-5410.

Seção dos condutores fase (mm²)	Seção mínima do condutor neutro (mm²)
1,5 a 16	a mesma seção do condutor fase
25	16
35	16
50	25
70	35
95	50
120	70
150	95
185	95
240	120
300	150

Terminal de Aterramento Principal

Terminal de Aterramento Principal

- Em toda instalação deve ser previsto um terminal (ou barra) de aterramento principal e os seguintes condutores devem ser a ele ligados:
 - a condutores de aterramento;
 - b condutores de proteção;
 - c condutores da ligação equipotencial principal;
 - d condutor de aterramento funcional, se for necessário.

REFERÊNCIAS

- Manual Pirelli de Instalações Elétricas http://www.prysmian.com.br/export/sites/prysmianptBR/energy/pdfs/Manualinstalacao.pdf
- CAVALIN, Geraldo; CERVELIN, Severino. Instalações elétricas prediais: conforme norma NBR 5410:2004. 21. ed. rev. e atual. São Paulo: Érica, 2011. 422 p. ISBN 9788571945418 (broch.)
- FILHO, Domingos Leite Lima. Projetos de Instalações Elétricas Prediais. Editora Érica. 11ª Edição. 2007. ISBN:978-85-7194-417-6